Regioselective Iodine-Catalyzed Construction of Polysubstituted Pyrroles from Allenes and Enamines

Yu Wang, Chen-Min Jiang, Hong-Liang Li, Fu-Sheng He, Xiaoyan Luo,* and Wei-Ping Deng*

School of Pharmacy and Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China

Supporting Information

ABSTRACT: A novel I_2 -catalyzed tandem Michael addition/oxidative annulation of allenes and enamines for the construction of polysubstituted pyrroles has been developed. This protocol represents an efficient and highly regioselective way to access functionalized pyrroles in moderate to excellent yields under mild conditions.

 \mathbf{P} yrroles represent one of the most important classes of heterocycles found in numerous pharmaceutical molecules, natural products, and functional materials,¹ such as Atorvastatin, Sunitinib, Lamellarin Q, and Porphobilinogen (Figure 1).

Figure 1. Selected biological and pharmaceutical molecules bearing highly substituted pyrrole.

Therefore, many synthetic methods toward pyrrole rings with potent bioactivity have been developed.^{2,3} Neverthless, there is still a demand for easy and efficient protocols to construct these molecules, especially the highly regioselective synthesis of multisubstituted pyrroles.

Enamines are of great importance in organic chemistry, which not only play a prominent role in organocatalysis⁴ but also serve as a versatile synthetic building block.⁵ The utility of enamines in the transition-metal-catalyzed oxidative couplings for the synthesis of valuable pyrroles has been demonstrated recently.⁶ For example, Glorius and co-workers reported a Rh (III)-catalyzed cyclization reaction of enamines with unactivated alkynes to deliver polysubstituted pyrroles.^{6a} Simultaneously, Fagnou et al. found that the pyrrole frameworks could be achieved from enamines and alkynes via Rh (III)-catalyzed

alkene sp² C–H activation of enamines.^{6b} In addition, You and Cui independently developed a copper(iron)-catalyzed pyrrole synthesis reaction using enamines as the starting materials.^{6e,f} As is known to all, enamines also exhibit strong bisnucleophilicity at C-2 position and amino group. For instance, in 1971, Danishefsky and co-workers found that enamines could smoothly react with allenes under alkaline conditions at 100 °C, delivering α -pyridones (Scheme 1a).⁷ On the other hand,

Scheme 1. Synthesis of Heterocycles from Bisnucleophiles and Allenes

given that the wide applications of allenes for constructing structurally diverse heterocycles,^{8,9} we have recently developed a novel protocol for the synthesis of polysubstituted furans via KI/TBHP promoted tandem Michael addition/oxidative annulation, in which a novel $\alpha_{,\beta}$ -double electrophilic addition strategy of allene-1,3-dicarboxylic esters with 1,3-dicarbonyl compounds was first established (Scheme 1b).¹⁰ Therefore, as part of our continuous interest in the synthesis of heterocycles,¹¹ we were wondering whether a similar $\alpha_{,\beta}$ -double electrophilic addition strategy could be extended to the reaction

Received: July 20, 2016 **Published:** August 25, 2016

The Journal of Organic Chemistry

of allenes with enamines instead of 1,3-dicarbonyl compounds, which would afford pyrroles rather than pyridones. It should be pointed out that a regioselectivity issue may exsit when unsymmetric allenes are employed for this reaction. Herein, we would like to report an efficient and highly regioselective method to access functionalized pyrroles via tandem Michael addition of enamines with allenes and I_2 -catalyzed oxidative annulation (Scheme 1c).

Our investigation began with the reaction of ethyl (*Z*)-3-(ethylamino)but-2-enoate (1a) and dimethyl penta-2,3-dienedioate (2a) in the presence of KI and TBHP in DCE at 25 °C under air atmosphere. As expected, the reaction proceeded smoothly to afford the desired product 3aa, albeit in only 30% yield (Table 1, entry 1). Increasing the temperature to 60 °C

Table 1. Optimization of Reaction Conditions^a

O ₂ Et ⁺	MeO ₂	ccc	0₂MeCa	nt., [O]	$ \downarrow $	CO ₂ Me
O ₂ Et	-	*	-			-
			Additiv	e, Solve	nt Et	
		2a	I	emp.	3aa	
			t	temp.		yield
1a:2a	cat.	[O]	additive	(°Ċ)	solvent	(%) ^b
1:1	KI	TBHP	-	25	DCE	30
1:1	KI	TBHP	-	60	DCE	45
1:1	I_2	TBHP	-	60	DCE	65
1:1	I_2	TBHP	K ₂ CO ₃	60	DCE	71
1:1	_	TBHP	K_2CO_3	60	DCE	ND ^{c,d}
1:1	I_2	-	K_2CO_3	60	DCE	20
1.2:1	I_2	TBHP	K_2CO_3	60	DCE	84
1.5:1	I_2	TBHP	K_2CO_3	60	DCE	90
2:1	I_2	TBHP	K_2CO_3	60	DCE	85
1.5:1	I_2	DTBP	K ₂ CO ₃	60	DCE	40
1.5:1	I_2	30% H ₂ O ₂	K ₂ CO ₃	60	DCE	42
1.5:1	I_2	$K_2S_2O_8$	K_2CO_3	60	DCE	48
1.5:1	I_2	TBPB	K ₂ CO ₃	60	DCE	42
1.5:1	I_2	CHP	K_2CO_3	60	DCE	65
1.5:1	I_2	m-CPBA	K_2CO_3	60	DCE	48
1.5:1	I_2	TBHP	K ₂ CO ₃	60	1,4- dioxane	73
1.5:1	I_2	TBHP	K ₂ CO ₃	60	THF	61
1.5:1	I_2	TBHP	K ₂ CO ₃	60	CH ₃ CN	82
1.5:1	I_2	TBHP	K ₂ CO ₃	60	EtOAc	61
1.5:1	I_2	TBHP	K_2CO_3	60	toluene	61
1.5:1	I_2	TBHP	K_2CO_3	60	DMF	20
1.5:1	I_2	TBHP	K ₂ CO ₃	60	EtOH	65
	-	TDID	KCO	40	DCE	50 ^e
1.5:1	I_2	1 DHL	$R_2 C C_3$	-10	DOD	30
	1.5:1 1.5:1 1.5:1 1.5:1 1.5:1 1.5:1 1.5:1 1.5:1 1.5:1 1.5:1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccccccccc} & H_2O_2 \\ H_2O_2 \\ 1.5:1 & I_2 & K_2S_2O_8 \\ 1.5:1 & I_2 & TBPB \\ 1.5:1 & I_2 & CHP \\ 1.5:1 & I_2 & m-CPBA \\ 1.5:1 & I_2 & TBHP \\ 1.5:1 & I_3 & TBHP \\ 1.5:1 & I_4 & TBHP \\ 1.5:1 & I_5 & TBHP \\ 1.5:1 & I_$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

^{*a*}Reaction conditions: **1a** (0.3 mmol), **2a** (0.2 mmol), cat. (0.04 mmol), oxidant (0.4 mmol), additive (0.04 mmol), solvent (1 mL), under air atmosphere, 2 h. ^{*b*}Isolated yield. ^{*c*}ND: Not detected. ^{*d*}The Michael addition product was isolated in 53% yield. ^{*e*}When the reaction was performed for 8 h, the isolated yield was 80%.

gave slightly better yield of **3aa** (45%, Table 1, entry 2). To our delight, the use of a catalytic amount of I_2 (20 mol %) instead of KI led to a dramatic increase in the yield of **3aa** (65%, Table 1, entry 3). Notably, Gao and his co-workers reported a I_2 -promoted synthesis of dihydropyrroles by the reaction of enamines and chalcones, however, a stoichiometric amount of I_2 was required for the high yields.¹² Inspired by this report, we also found that K_2CO_3 had a positive effect for pyrrole formation (Table 1, entry 4). Next, the control experiments

found that the desired product was not detected in the absence of iodine, and only 20% of 3aa was observed when TBHP was excluded from the reaction (Table 1, entries 5-6). Obviously, in contrast to Gao's report, a catalytic amount of I_2 (20 mol %) also can catalyze the formation of pyrroles in the presence of TBHP. Further optimization by adjusting the molar ratio of the substrates 1a and 2a showed that 1.5 equiv of 1a was optimal to afford the desired product 3aa in 90% yield (Table 1, entries 7-9). Encouraged by this, various oxidants (such as DTBP, 30% H₂O₂, K₂S₂O₈, TBPB, CHP, m-CPBA) were evaluated, and we found that TBHP was the best choice of oxidant (Table 1. entries 10-15). Moreover, the solvent effect was also investigated, and DCE was found to be the optimal solvent (Table 1, entries 16-22). Additionally, whether the temperature was lowered to 40 °C or increased to 80 °C, the yield of 3aa (50% and 82%, respectively) was not further improved, indicating that 60 °C was the best choice (Table 1, entries 23-24). Therefore, the combination of 1a (1.5 equiv), 2a (1.0 equiv) in the presence of 20 mol % I₂, and 2 equiv TBHP in DCE at 60 °C was chosen as the optimal reaction conditions (Table 1, entry 8), providing 3aa in 90% yield.

Under the optimal conditions, substrate scope of this synthetic protocol was tested (Table 2). The reaction was

Table 2.	. Scope	of Enamines	in	the	Synthesis	of
Polysubs	stituted	Pyrroles 3 ^a				

R ¹ NH O	+ MeO ₂ C	20 mol % l ₂ R ³ OC 2 equiv TBHP	
$R^2 \sim R^3$		K ₂ CO ₃ , DCE R ²	
1	2a	60 °C	R ¹ 3
entry	substrate 1 $(R^1/R^2/R^3)$	products 3	yield (%) ^b
1	la (Et/Me/OEt)	3aa	90
2	1b (Bn/Me/OEt)	3ba	81
3	1c (PMB/Me/OEt)	3ca	75
4	1d (PMP/Me/OEt)	3da	87
5	le (Mes/Me/OEt)	3ea	75
6	$1f (4-MeC_6H_4/Me/OMe)$	3fa	49
7	1g (4-ClC ₆ H ₄ /Me/OMe)	3ga	40
8	1h (Et/Et/OMe)	3ha	81
9	1i (Et/Ph/OEt)	3ia	91
10	1j (Et/4-NO ₂ C ₆ H ₄ /OEt)	3ja	58
11	1k (Et/4-MeOC ₆ H ₄ /OEt)	3ka	90
12	11 (Et/2-Pyridyl/OMe)	3la	51
13	lm (Et/Me/OMe)	3ma	90
14	1n (Et/Me/O ⁱ Pr)	3na	72
15	1o (Et/Me/O ^t Bu)	30a	73
16	1p (Et/Me/OBn)	3pa	77
17	1q (Bn/ ^t Bu/Ph)	3qa	45
18	1r (Bn/Ph/Ph)	3ra	50

"Reaction conditions: 1 (0.3 mmol), 2a (0.2 mmol), I_2 (0.04 mmol), TBHP (0.4 mmol), K_2CO_3 (0.04 mmol), DCE (1 mL), under air atmosphere. ^bIsolated yield.

readily extended to a variety of different substituted enamines **1**. First, several different N-substituents were examined, and when R^1 was alkyl or phenyl group with different electronic properties, the corresponding products were obtained in moderate to excellent yields (Table 2, entries 1–7). It was noteworthy that the electronic properties of the phenyl groups had significant influence on the yields of the desired products. The *para*-MeO substituent substrate **1d** delivered the corresponding compound **3da** in 87% yield (Table 2, entry

The Journal of Organic Chemistry

4). However, the yield of **3ga** with a *para*-Cl substituent dropped to 40% (Table 2, entry 7). Moreover, the corresponding pyrroles with alkyl or aryl groups on the 2-position could also be successfully synthesized in good to excellent yields (Table 2, entries 8–11). Interestingly, **11** containing a pyridine group was also suitable for this reaction, affording the desired product **3la** in 51% yield (Table 2, entry 12). We also found that the ester group of **1** could be ranged from methyl to isopropyl, *tert*-butyl, or benzyl esters, all of which proceeded with dimethyl penta-2,3-dienedioate **2a** to afford the desired products in good to excellent yields (72%–90%, Table 2, entries 13–16). Finally, β -enaminones were well tolerated under optimized conditions, delivering **3qa** and **3ra** in 45% and 50% yield, respectively (Table 2, entries 17–18).

We next investigated the reaction of β -enamino ester 1m with various allene derivatives bearing ethyl ester, alkyl, or aryl groups (2b-h). The reaction of 1m with 2b proceed smoothly to give the corresponding pyrrole 3mb in good yield (80%, Table 3, entry 1). To our delight, when an unsymmetric allene

HN ^{Et} CO ₂ Me	+ EtO ₂ C	20 mol % I2 2 equiv TBHP K2CO3, DCE 60 °C	$\begin{array}{c} D_2C \\ \hline N \\ Et \\ 3 \end{array} \\ \begin{array}{c} CO_2Et \\ CO_2Et \\ R^4 \\ Et \\ 3 \end{array}$
entry	substrate 2 (\mathbf{R}^4)	products 3	yield (%) ^b
1	2b (CO ₂ Et)	3mb	80
2	2c (Et)	3mc	57
3	2d ("Bu)	3md	41
4	2e (Ph)	3me	46
5	$2f (4-MeOC_6H_4)$	3mf	35
6	$2g (4-FC_6H_4)$	3 mg	48
7	2h (Bn)	3mh	58

^{*a*}Reaction conditions: **1m** (0.3 mmol), **2** (0.2 mmol), I_2 (0.04 mmol), TBHP (0.4 mmol), K_2CO_3 (0.04 mmol), DCE (1 mL), under air atmosphere. ^{*b*}Isolated yield.

2c was employed for this reaction, in contrast to our furan synthesis,¹⁰ the desired product **3mc** was obtained in 57% yield with excellent regioselectivity (Table 3, entry 2). Subtle change of R⁴ group of allene to "Bu gave slightly lower yield of 3md with excellent regioselectivity as well (Table 3, entry 3). Encouraged by this result, next a series of aryl-substituted allenes (2e-g) bearing electron-withdrawing and -donating groups were tested. The reactions all proceed well to regioselectively form the desired products (3me-g) in moderate yields (35%-48%, Table 3, entries 4-6), notably, the 2f bearing an electronic donating group showed the lowest reactivity presumably due to the higher electronic density of allene moiety (Table 3, entry 5). In addition, 2h containing a benzyl group was also found suitable for this reaction, affording corresponding pyrrole 3mh in 58% yield (Table 3, entry 7), and the structure of 3mh was unequivocally confirmed by single-crystal X-ray diffraction analysis (see the Supporting Information (SI)).¹³

Based on the results described above and previous reports,^{12,14} a proposed mechanism is illustrated in Scheme 2. Initially, enamines 1 react with allenes 2 to afford the resonance stabilized anionic intermediate A and B via Michael addition under alkaline conditions, which is followed by a kinetic

controlled electrophilic substitution with I₂, regioselectively providing the γ -carbon iodination intermediate C.¹⁵ Next, deprotonation and intramolecular nucleophilic substitution transform C into intermediate D, in which the released I⁻ can be oxidized by TBHP to regenerate the iodine catalyst. Finally, intermediate D undergoes a double-bond isomerization to give the pyrroles 3.

CONCLUSION

In summary, we have successfully developed a novel I_2 catalyzed synthesis of polysubstituted pyrroles via a tandem Michael addition/oxidative annulation pathway from allenes and enamines. This protocol features mild reaction conditions, broad substrate scope, and especially excellent regioselectivities for the unsymmetric allenes, providing a novel synthetic strategy for the construction of pyrroles, which would be of great importance for the drug discovery in terms of the structure diversity of pyrroles derivatives.

EXPERIMENTAL SECTION

General Information. Commercial reagents were used without further purification unless otherwise noted. Melting points were obtained in open capillary tubes using a micromelting point apparatus that was uncorrected. Mass spectra were recorded on TOF mass spectrometer. ¹H NMR spectra were recorded on a 400 MHz spectrometer in CDCl₃. Chemical shifts are reported in ppm with the internal TMS signal at 0.0 ppm as a standard. The data are reported as (s = singlet, d = doublet, t = triplet, q = quartet, and m = multiplet). ¹³C NMR spectra were recorded on a 100 MHz spectrometer in CDCl₃. Chemical shifts are reported in ppm with the internal chloroform signal at 77.16 ppm as a standard. TLC (thin-layer chromatogram) was performed using commercially prepared 100–400 mesh silica gel plates, and visualization was effected at 254 or 365 nm.

General Procedure for the Preparation of Polysubstituted Pyrroles 3. To a 10 mL tube containing I₂ (10.2 mg, 0.04 mmol) and K_2CO_3 (5.5 mg, 0.04 mmol) in DCE (1 mL) was added allenes 2 (0.2 mmol), enamines 1 (0.3 mmol), and TBHP (51.5 mg, 0.4 mmol). The mixture was then stirred at 60 °C under air atmosphere until the reaction was completed as judged by TLC, the resulting mixture was concentrated under the vacuum and directly purified by column chromatography (petroleum ether/ethyl acetate) on silica-gel to give the desired product 3.

4-Ethyl 2-Methyl 1-Ethyl-3-(2-methoxy-2-oxoethyl)-5-methyl-1Hpyrrole-2,4-dicarboxylate (**3aa**). Yellow solid, yield: 55.8 mg, 90%; mp = 52–53 °C, R_f = 0.30 (petroleum ether/ethyl acetate = 6:1); ¹H NMR (400 MHz, CDCl₃) δ 4.33 (q, J = 7.1 Hz, 2H), 4.26 (q, J = 7.1 Hz, 2H), 4.21 (s, 2H), 3.82 (s, 3H), 3.70 (s, 3H), 2.56 (s, 3H), 1.36– 1.29 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 172.7, 165.1, 161.7, 141.0, 127.0, 120.2, 112.8, 59.9, 51.9, 51.3, 40.8, 32.4, 15.9, 14.4, 11.8; IR (KBr) *v* 3467, 3000, 2954, 2850, 1742, 1691, 1479, 1434, 1379, 1338, 1260, 1244, 1172, 1151, 1100, 189, 734 cm⁻¹; HRMS (EI-TOF) calcd for C₁₅H₂₁NO₆ [M]⁺ 311.1369, found: 311.1367.

4-*Ethyl* 2-*Methyl* 1-*Benzyl-3-(2-methoxy-2-oxoethyl)-5-methyl-*1*H*-*pyrrole-2,4-dicarboxylate* (**3ba**). Yellow oil, yield: 60.5 mg, 81%, $R_f = 0.30$ (petroleum ether/ethyl acetate = 6:1); ¹H NMR (400 MHz, CDCl₃) δ 7.25–7.12 (m, 3H), 6.86 (d, *J* = 7.4 Hz, 2H), 5.54 (s, 2H), 4.26–4.12 (m, 4H), 3.66 (s, 3H), 3.64 (s, 3H), 2.41 (s, 3H), 1.26 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.6, 165.1, 161.6, 142.1, 137.3, 128.9, 127.3, 127.3, 125.8, 120.9, 113.3, 60.0, 52.0, 51.4, 48.8, 32.5, 14.4, 12.1; IR (KBr) *v* 3530, 3449, 2954, 2850, 1742, 1698, 1473, 1441, 1264, 1130, 1104, 1023, 799, 735, 708 cm⁻¹; HRMS (EI-TOF) calcd for C₂₀H₂₃NO₆ [M]⁺ 373.1525, found: 373.1526.

4-*E*thyl 2-Methyl 3-(2-Methoxy-2-oxoethyl)-1-(4-methoxybenzyl)-5-methyl-1H-pyrrole-2,4-dicarboxylate (**3***ca*). Yellow oil, yield: 60.5 mg, 75%, R_f = 0.30 (petroleum ether/ethyl acetate = 4:1); ¹H NMR (400 MHz, CDCl₃) δ 6.88 (d, *J* = 8.5 Hz, 2H), 6.82 (d, *J* = 8.6 Hz, 2H), 5.54 (s, 2H), 4.30–4.24 (m, 4H), 3.77 (s, 3H), 3.75 (s, 3H), 3.71 (s, 3H), 2.49 (s, 3H), 1.33 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.6, 165.1, 161.7, 158.8, 142.1, 129.3, 127.2, 127.1, 120.9, 114.2, 113.2, 60.0, 55.4, 52.0, 51.4, 48.3, 32.5, 14.4, 12.2; IR (KBr) *v* 3446, 2953, 2922, 2849, 1741, 1700, 1613, 1513, 1342, 1263, 1250, 1172, 1130, 1105, 846, 817, 743 cm⁻¹; HRMS (EI-TOF) calcd for C₂₁H₂₅NO₇ [M]⁺ 403.1631, found: 403.1630.

4-*E*thyl 2-*Methyl* 3-(2-*Methoxy*-2-oxoethyl)-1-(4-methoxyphenyl)-5-methyl-1H-pyrrole-2,4-dicarboxylate (**3da**). Yellow oil, yield: 65.3 mg; 87%, $R_f = 0.20$ (petroleum ether/ethyl acetate = 6:1); ¹H NMR (400 MHz, CDCl₃) δ 7.10 (d, J = 8.8 Hz, 2H), 6.96 (d, J = 8.7Hz, 2H), 4.34–4.23 (m, 4H), 3.86 (s, 3H), 3.73 (s, 3H), 3.60 (s, 3H), 2.25 (s, 3H), 1.34 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.6, 165.1, 161.2, 159.6, 142.9, 131.5, 128.8, 126.9, 122.4, 114.2, 113.1, 60.0, 55.6, 52.0, 51.3, 32.2, 14.5, 13.2; IR (KBr) v 3451, 2953, 2847, 1742, 1702, 1514, 1461, 1442, 1250, 1165, 1106, 1069, 835, 782, 660, 621 cm⁻¹; HRMS (EI-TOF) calcd for C₂₀H₂₃NO₇ [M]⁺ 389.1475, found: 389.1476.

4-Ethyl 2-Methyl 1-Mesityl-3-(2-methoxy-2-oxoethyl)-5-methyl-1H-pyrrole-2,4-dicarboxylate (**3ea**). Yellow solid, yield: 60.2 mg, 75%; mp = 98–99 °C, R_f = 0.40 (petroleum ether/ethyl acetate = 6:1); ¹H NMR (400 MHz, CDCl₃) δ 6.95 (s, 2H), 4.35–4.23 (m, 4H), 3.72 (s, 3H), 3.61 (s, 3H), 2.34 (s, 3H), 2.16 (s, 3H), 1.87 (s, 6H), 1.35 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.6, 165.2, 160.9, 141.5, 138.4, 135.3, 134.7, 128.9, 127.2, 120.9, 113.3, 60.0, 51.9, 51.3, 32.23, 21.3, 17.5, 14.4, 12.2; IR (KBr) *v* 3394, 2986, 2956, 2919, 2851, 1746, 1696, 1453, 1379, 1337, 1266, 1211, 1182, 1147, 865, 732, 657 cm⁻¹; HRMS (EI-TOF) calcd for C₂₂H₂₇NO₆ [M]⁺ 401.1838, found: 401.1839.

Dimethyl 3-(2-Methoxy-2-oxoethyl)-5-methyl-1-(p-tolyl)-1H-pyrrole-2,4-dicarboxylate (**3fa**). Yellow oil, yield: 35.2 mg, 49%, $R_f = 0.30$ (petroleum ether/ethyl acetate = 6:1); ¹H NMR (400 MHz, CDCl₃) δ 7.26 (d, J = 7.1 Hz, 2H), 7.06 (d, J = 8.1 Hz, 2H), 4.27 (s, 2H), 3.81 (s, 3H), 3.73 (s, 3H), 3.60 (s, 3H), 2.43 (s, 3H), 2.25 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.6, 165.5, 161.1, 142.6, 138.7, 136.2, 129.7, 127.5, 127.0, 122.4, 112.9, 52.0, 51.2, 51.1, 32.2, 21.4, 13.2; IR (KBr) v 3452, 3393, 2992, 2952, 2923, 2849, 1744, 1705, 1514, 1439, 1279, 1262, 1193, 1164, 1108, 1069, 821, 795, 735, 661 cm⁻¹; HRMS (EI-TOF) calcd for C₁₉H₂₁NO₆ [M]⁺ 359.1369, found: 359.1370.

Dimethyl 1-(4-Chlorophenyl)-3-(2-methoxy-2-oxoethyl)-5-methyl-1H-pyrrole-2,4-dicarboxylate (**3ga**). Yellow oil, yield: 30.4 mg, 40%, $R_f = 0.30$ (petroleum ether/ethyl acetate = 6:1); ¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, J = 8.8 Hz, 2H), 7.13 (d, J = 8.8 Hz, 2H), 4.27 (s, 2H), 3.82 (s, 3H), 3.73 (s, 3H), 3.61 (s, 3H), 2.25 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.5, 165.3, 161.0, 142.4, 137.4, 134.8, 129.4, 129.2, 127.4, 122.3, 113.4, 52.1, 51.4, 51.2, 32.1, 13.2; IR (KBr) v 3394, 2995, 2953, 2922, 2849, 1742, 1706, 1495, 1439, 1263, 1193, 1165, 1090, 835, 791, 742, 658, 514 cm⁻¹; HRMS (EI-TOF) calcd for C₁₈H₁₈ClNO₆ [M]⁺ 379.0823, found: 379.0820.

Dimethyl 1,5-Diethyl-3-(2-methoxy-2-oxoethyl)-1H-pyrrole-2,4dicarboxylate (3ha). Yellow solid, yield: 50.4 mg, 81%; mp = 8082 °C, R_f = 0.30 (petroleum ether/ethyl acetate = 6:1); ¹H NMR (400 MHz, CDCl₃) δ 4.33 (q, J = 7.1 Hz, 2H), 4.20 (s,2H), 3.82 (s, 3H), 3.79 (s, 3H), 3.70 (s, 3H), 2.98 (q, J = 7.5 Hz, 2H), 1.35 (t, J = 7.1 Hz,3H), 1.21 (t, J = 7.5 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.8, 165.3, 161.6, 146.7, 127.3, 120.0, 111.8, 51.9, 51.3, 51.0, 40.6, 32.5, 19.0, 16.8, 14.1; IR (KBr) v 3455, 2978, 2953, 2877, 2848, 1741, 1698, 1492, 1435, 1341, 1275, 1193, 1175, 1101, 743 cm⁻¹; HRMS (EI-TOF) calcd for C₁₅H₂₁NO₆ [M]⁺ 311.1369, found: 311.1368.

4-Ethyl 2-Methyl 1-Ethyl-3-(2-methoxy-2-oxoethyl)-5-phenyl-1Hpyrrole-2,4-dicarboxylate (**3ia**). Yellow solid, yield: 68.0 mg, 91%; mp = 94–96 °C, $R_f = 0.40$ (petroleum ether/ethyl acetate = 6:1); ¹H NMR (400 MHz, CDCl₃) δ 7.49–7.41 (m, 3H), 7.34–7.29 (m, 2H), 4.31 (s, 2H), 4.13 (q, J = 7.0 Hz, 2H), 3.95 (q, J = 7.2 Hz, 2H), 3.85 (s, 3H), 3.73 (s, 3H), 1.18 (t, J = 7.0 Hz, 3H), 0.86 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.6, 164.4, 161.7, 143.4, 132.1, 130.2, 128.8, 128.1, 127.3, 120.6, 114.0, 59.5, 51.9, 51.4, 41.9, 32.1, 16.8, 13.6; IR (KBr) v 3457, 2985, 2957, 2941, 2901, 1738, 1694, 1483, 1450, 1410, 1274, 1248, 1192, 1120, 1065, 849, 769, 703 cm⁻¹; HRMS (EI-TOF) calcd for C₂₀H₂₃NO₆ [M]⁺ 373.1525, found: 373.1526.

4-Ethyl 2-Methyl 1-Ethyl-3-(2-methoxy-2-oxoethyl)-5-(4-nitrophenyl)-1H-pyrrole-2,4-dicarboxylate (**3***j***a**). Yellow solid, yield: 48.5 mg, 58%; mp = 94–96 °C, $R_f = 0.30$ (petroleum ether/ethyl acetate = 6:1); ¹H NMR (400 MHz, CDCl₃) δ 8.33 (d, J = 7.6 Hz, 2H), 7.54 (d, J = 8.2 Hz, 2H), 4.30 (s, 2H), 4.13 (q, J = 7.0 Hz, 2H), 3.99 (q, J = 7.2 Hz, 2H), 3.87 (s, 3H), 3.73 (s, 3H), 1.18 (t, J = 7.1 Hz, 3H), 0.93 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.4, 163.8, 161.5, 148.2, 140.4, 139.0, 131.6, 127.4, 123.4, 121.7, 114.5, 60.0, 52.1, 51.7, 42.2, 32.1, 16.9, 13.8; IR (KBr) v 3399, 2987, 2952, 2922, 2850, 1739, 1716, 1696, 1522, 1486, 1347, 1277, 1193, 1169, 855, 711 cm⁻¹; HRMS (EI-TOF) calcd for C₂₀H₂₂N₂O₈ [M]⁺ 418.1376, found: 418.1378.

4-Ethyl 2-Methyl 1-Ethyl-3-(2-methoxy-2-oxoethyl)-5-(4-methoxyphenyl)-1H-pyrrole-2,4-dicarboxylate (**3ka**). Yellow solid, yield: 72.6 mg, 90%; mp = 70–72 °C, R_f = 0.30 (petroleum ether/ethyl acetate = 6:1); ¹H NMR (400 MHz, CDCl₃) δ 7.23 (d, J = 8.6 Hz, 2H), 6.96 (d, J = 8.6 Hz, 2H), 4.29 (s, 2H), 4.14 (q, J = 7.1 Hz, 2H), 3.99 (q, J = 7.1 Hz, 2H), 3.88–3.83 (m, 6H), 3.72 (s, 3H), 1.17 (t, J = 7.0 Hz, 3H), 0.95 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.6, 164.5, 161.7, 160.0, 143.4, 131.5, 127.2, 124.0, 120.5, 114.1, 113.5, 59.6, 55.4, 51.9, 51.3, 41.7, 32.2, 16.8, 13.8; IR (KBr) v 3449, 2980, 2953, 2852, 2833, 1734, 1692, 1485, 1453, 1273, 1251, 1187, 1168, 1061, 835, 797, 752 cm⁻¹; HRMS (EI-TOF) calcd for C₂₁H₂₅NO₇ [M]⁺ 403.1631, found: 403.1632.

Dimethyl 1-Ethyl-3-(2-Methoxy-2-oxoethyl)-5-(pyridin-2-yl)-1Hpyrrole-2,4-dicarboxylate (**3***l***a**). Yellow oil, yield: 36.8 mg, 51%, R_f = 0.20 (petroleum ether/ethyl acetate = 4:1); ¹H NMR (400 MHz, CDCl₃) δ 8.73 (d, *J* = 5.0 Hz, 1H), 7.83–7.77 (m, 1H), 7.44 (d, *J* = 7.7 Hz, 1H), 7.39–7.34 (m, 1H), 4.28 (s, 2H), 4.19 (q, *J* = 7.0 Hz, 2H), 3.86 (s, 3H), 3.72 (s, 3H), 3.51 (s, 3H), 1.22 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.5, 164.6, 161.6, 151.3, 149.5, 141.7, 136.0, 127.0, 126.6, 123.5, 121.1, 113.9, 52.0, 51.5, 51.0, 42.3, 32.3, 16.7; IR (KBr) v 3448, 2954, 2923, 2852, 1740, 1706, 1478, 1448, 1272, 1197, 1171, 1100, 793, 749, 620 cm⁻¹; HRMS (EI-TOF) calcd for C₁₈H₂₀N₂O₆ [M]⁺ 360.1321, found: 360.1323.

Dimethyl 1-Ethyl-3-(2-Methoxy-2-oxoethyl)-5-methyl-1H-pyrrole-2,4-dicarboxylate (**3ma**). Yellow solid, yield: 53.5 mg, 90%; mp = 84–86 °C, R_f = 0.30 (petroleum ether/ethyl acetate = 6:1); ¹H NMR (400 MHz, CDCl₃) δ 4.34 (q, J = 7.1 Hz, 2H), 4.20 (s, 2H), 3.82 (s, 3H), 3.79 (s, 3H), 3.70 (s, 3H), 2.56 (s, 3H), 1.32 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.8, 165.6, 161.6, 141.0, 127.1, 120.2, 112.6, 52.0, 51.3, 51.0, 40.9, 32.4, 15.94, 11.8; IR (KBr) v3458, 2996, 2954, 2850, 1740, 1695, 1539, 1435, 1346, 1262, 1190, 1154, 1119, 1102, 835, 789, 740 cm⁻¹; HRMS (EI-TOF) calcd for C₁₄H₁₉NO₆ [M]⁺ 297.1212, found: 297.1211.

4-Isopropyl 2-Methyl 1-Ethyl-3-(2-methoxy-2-oxoethyl)-5-methyl-1H-pyrrole-2,4-dicarboxylate (**3na**). Yellow solid, yield: 46.8 mg, 72%; mp = 65–67 °C, R_f = 0.30 (petroleum ether/ethyl acetate = 6:1); ¹H NMR (400 MHz, CDCl₃) δ 5.23–5.10 (m, 1H), 4.33 (q, J = 7.1 Hz, 2H), 4.21 (s,2H), 3.82 (s, 3H), 3.70 (s, 3H), 2.56 (s, 3H), 1.36–1.28 (m, 9H); ¹³C NMR (100 MHz, CDCl_3) δ 172.6, 164.7, 161.7, 141.0, 126.9, 120.1, 113.2, 67.3, 51.9, 51.3, 40.8, 32.5, 22.2, 16.0, 11.8; IR (KBr) *v* 3459, 2983, 2955, 2935, 2848, 1736, 1686, 1445, 1341, 1299, 1259, 1243, 1170, 1153, 1122, 1097, 792, 734 cm⁻¹; HRMS (EI-TOF) calcd for C₁₆H₂₃NO₆ [M]⁺ 325.1525, found: 325.1526.

4-(tert-Butyl) 2-Methyl 1-Ethyl-3-(2-methoxy-2-oxoethyl)-5methyl-1H-pyrrole-2,4-dicarboxylate (**3oa**). Yellow oil, yield: 49.6 mg, 73%, $R_f = 0.30$ (petroleum ether/ethyl acetate = 6:1); ¹H NMR (400 MHz, CDCl₃) δ 4.32 (q, J = 7.1 Hz, 2H), 4.19 (s, 2H), 3.81 (s, 3H), 3.69 (s, 3H), 2.54 (s, 3H), 1.53 (s, 9H), 1.31 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.6, 164.5, 161.7, 140.6, 126.6, 119.8, 114.3, 80.6, 51.8, 51.2, 40.7, 32.4, 28.5, 16.0, 11.8; IR (KBr) v3394, 2978, 2955, 1741, 1707, 1690, 1477, 1342, 1271, 1197, 1171, 1146, 1102, 844, 795, 733 cm⁻¹; HRMS (EI-TOF) calcd for C₁₇H₂₅NO₆ [M]⁺ 339.1682, found: 339.1683.

4-Benzyl 2-Methyl 1-Ethyl-3-(2-methoxy-2-oxoethyl)-5-methyl-1H-pyrrole-2,4-dicarboxylate (**3pa**). Yellow oil, yield: 57.5 mg, 77%, $R_f = 0.30$ (petroleum ether/ethyl acetate = 6:1); ¹H NMR (400 MHz, CDCl₃) δ 7.41–7.35 (m, 3H), 7.34–7.28 (m, 2H), 5.26 (s, 2H), 4.33 (q, J = 7.1 Hz, 2H), 4.19 (s, 2H), 3.81 (s, 3H), 3.59 (s, 3H), 2.55 (s, 3H), 1.31 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.6, 164.9, 161.6, 141.2, 136.4, 128.6, 128.4, 128.2, 127.2, 120.3, 112.5, 65.9, 51.9, 51.3, 40.9, 32.4, 15.9, 12.0; IR (KBr) v 3395, 2951, 2850, 1742, 1697, 1440, 1263, 1169, 1151, 1096, 738, 700 cm⁻¹; HRMS (EI-TOF) calcd for C₂₀H₂₃NO₆ [M]⁺ 373.1525, found: 373.1526.

Methyl 4-*Benzoyl-1-Benzyl-5-(tert-butyl)-3-(2-methoxy-2-oxoeth-yl)-1H-pyrrole-2-carboxylate* (**3qa**). Yellow solid, yield: 40.3 mg, 45%; mp = 151–153 °C, R_f = 0.20 (petroleum ether/ethyl acetate = 6:1); ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, J = 7.3 Hz, 2H), 7.57 (t, J = 7.4 Hz, 1H), 7.49–7.43 (m, 2H), 7.31 (t, J = 7.5 Hz,2H), 7.21 (t, J = 7.3 Hz, 1H), 6.88 (d, J = 7.1 Hz, 2H), 5.91 (s, 2H), 3.58 (s, 3H), 3.50 (s, 2H), 3.47 (s, 3H), 1.26 (s,9H); ¹³C NMR (100 MHz, CDCl₃) δ 197.9, 171.7, 161.2, 143.7, 139.7, 139.3, 133.7, 128.8, 128.8, 127.0, 125.2, 124.1, 123.0, 121.6, 51.8, 51.1, 50.8, 34.3, 32.3, 31.6; IR (KBr) ν 3409, 2956, 2924, 2852, 1742, 1710, 1654, 1440, 1273, 1196, 1171, 1111, 730, 694 cm⁻¹; HRMS (EI-TOF) calcd for C₂₇H₂₉NO₅ [M]⁺ 447.2046, found: 447.2047.

Methyl 4-Benzoyl-1-Benzyl-3-(2-methoxy-2-oxoethyl)-5-phenyl-1H-pyrrole-2-carboxylate (**3ra**). Yellow oil, yield: 46.8 mg, 50%, R_f = 0.20 (petroleum ether/ethyl acetate = 6:1); ¹H NMR (400 MHz, CDCl₃) δ 7.56–7.49 (m, 2H), 7.26–7.24 (m, 1H), 7.24–7.21 (m, 2H), 7.23–7.15 (m, 1H), 7.11 (d, J = 7.8 Hz, 2H), 7.11–7.03 (m, SH), 6.83–6.80 (m, 2H), 5.54 (s, 2H), 4.11 (s, 2H), 3.74 (s, 3H), 3.64 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 194.2, 172.2, 161.7, 142.9, 139.1, 138.6, 132.1, 131.0, 130.1, 129.6, 129.0, 128.8, 128.3, 127.9, 127.4, 127.3, 125.9, 124.1, 122.1, 52.1, 51.5, 50.0, 32.0; IR (KBr) v 3450, 2950, 2922, 2851, 1736, 1705, 1636, 1452, 1439, 1258, 1203, 1169, 1127, 764, 724, 700 cm⁻¹; HRMS (EI-TOF) calcd for C₂₉H₂₅NO₅ [M]+ 467.1733, found: 467.1734.

2-Ethyl 4-Methyl 3-(2-Ethoxy-2-oxoethyl)-1-ethyl-5-methyl-1Hpyrrole-2,4-dicarboxylate (**3mb**). Yellow oil, yield: 52.1 mg, 80%, R_f = 0.30 (petroleum ether/ethyl acetate = 6:1); ¹H NMR (400 MHz, CDCl₃) δ 4.34 (q, J = 7.1 Hz, 2H), 4.28 (q, J = 7.1 Hz, 2H), 4.20 (s, 2H), 4.16 (q, J = 7.1 Hz, 2H), 3.79 (s, 3H), 2.55 (s, 3H), 1.37–1.29 (m, 6H), 1.26 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.1, 165.6, 161.3, 140.8, 127.0, 120.5, 112.6, 60.5, 60.3, 50.9, 40.8, 32.6, 16.0, 14.4, 14.3, 11.8; IR (KBr) v 3461, 3383, 2990, 2950, 2907, 2875, 1742, 1700, 1477, 1450, 1266, 1176, 1150, 1101,800, 741 cm⁻¹; HRMS (EI-TOF) calcd for C₁₆H₂₃NO₆ [M]⁺ 325.1525, found: 325.1527.

Methyl 4-(2-*Ethoxy-2-oxoethyl*)-1,5-*diethyl*-2-*methyl*-1*H-pyrrole*-3-*carboxylate* (**3mc**). Yellow oil, yield: 32.1 mg, 57%, $R_f = 0.30$ (petroleum ether/ethyl acetate = 10:1); ¹H NMR (400 MHz, CDCl₃) δ 4.15 (q, J = 7.1 Hz, 2H), 3.85 (q, J = 7.2 Hz, 2H), 3.74 (s, 3H), 3.63 (s, 2H), 2.62–2.46 (m, 5H), 1.31–1.22 (m, 6H), 1.12 (t, J = 7.5 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.9, 166.4, 134.9, 132.0, 112.5, 110.1, 60.5, 50.4, 38.4, 31.8, 17.4, 16.3, 15.5, 14.5, 11.6; IR (KBr) v 3426, 2973, 2934, 2874, 2851, 1740, 1697, 1531, 1444, 1242, 1180, 1161, 1113, 785 cm⁻¹; HRMS (EI-TOF) calcd for $C_{15}H_{23}NO_4$ [M]⁺ 281.1627, found: 281.1628.

Methyl 5-Butyl-4-(2-Ethoxy-2-oxoethyl)-1-ethyl-2-methyl-1H-pyrrole-3-carboxylate (3md). Yellow oil, yield: 25.4 mg, 41%, R_f = 0.30 (petroleum ether/ethyl acetate = 6:1); ¹H NMR (400 MHz, CDCl₃) \delta 4.15 (q, J = 7.1 Hz, 2H), 3.84 (q, J = 7.2 Hz, 2H), 3.73 (s, 3H), 3.62 (s, 2H), 2.51 (s, 3H), 1.48–1.31 (m, 6H), 1.29–1.23 (m, 6H), 0.92 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) \delta 172.9, 166.4, 135.0, 130.5, 112.9, 110.1, 60.4, 50.4, 38.4, 33.1, 32.0, 24.0, 22.7, 16.2, 14.5, 14.0, 11.7; IR (KBr) v 3445, 2955, 2931, 2871, 1740, 1699, 1443, 1254, 1177, 1160, 1118, 1072 785 cm⁻¹; HRMS (EI-TOF) calcd for C₁₇H₂₇NO₄ [M]⁺ 309.1940, found: 309.1939.

Methyl 4-(2-*Ethoxy-2-oxoethyl*)-1-*ethyl*-2-*methyl*-5-*phenyl*-1*H*-*pyrrole-3-carboxylate* (**3me**). Yellow oil, yield: 30.3 mg, 46%, $R_f = 0.30$ (petroleum ether/ethyl acetate = 6:1); ¹H NMR (400 MHz, CDCl₃) δ 7.46–7.36 (m, 3H), 7.32 (d, *J* = 7.8 Hz, 2H), 4.12 (q, *J* = 7.1 Hz, 2H), 3.83–3.72 (m, 5H), 3.46 (s, 2H), 2.59 (s, 3H), 1.24 (t, *J* = 7.2 Hz, 3H), 1.13 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 173.1, 166.3, 135.9, 132.5, 131.7, 131.2, 128.6, 128.3, 115.0, 110.5, 60.4, 50.5, 39.2, 32.4, 16.1, 14.4, 11.8; IR (KBr) *v* 3445, 2983, 2954, 2922, 2874, 2851, 1734, 1686, 1447, 1264, 1176, 1154, 1096, 1034, 799, 769, 704 cm⁻¹; HRMS (EI-TOF) calcd for C₁₉H₂₃NO₄ [M]⁺ 329.1627, found: 329.1628.

Methyl 4-(2-*Ethoxy*-2-oxoethyl)-1-ethyl-5-(4-methoxyphenyl)-2methyl-1*H*-pyrrole-3-carboxylate (**3mf**). Yellow solid, yield: 25.2 mg, 35%; mp = 87–89 °C, $R_f = 0.30$ (petroleum ether/ethyl acetate = 6:1); ¹H NMR (400 MHz, CDCl₃) δ 7.24 (d, J = 8.3 Hz, 2H), 6.95 (d, J = 8.3 Hz, 2H), 4.12 (q, J = 7.1 Hz, 2H), 3.85 (s, 3H), 3.79–3.72 (m, 5H), 3.45 (s, 2H), 2.58 (s, 3H), 1.25 (d, J = 7.4 Hz, 3H), 1.12 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 173.2, 166.3, 159.6, 135.6, 132.5, 132.2, 123.8, 114.9, 114.0, 110.3, 60.4, 55.4, 50.5, 39.1, 32.5, 16.2, 14.5, 11.8; IR (KBr) ν 3395, 2980, 2952, 2922, 2872, 2848, 1739, 1685, 1509, 1454, 1248, 1173, 1153, 1099, 1025, 835, 819, 792, 751, 589, 531 cm⁻¹; HRMS (EI-TOF) calcd for C₂₀H₂₅NO₅ [M]⁺ 359.1733, found: 359.1734.

Methyl 4-(2-*Ethoxy*-2-*oxoethyl*)-1-*ethyl*-5-(4-*fluorophenyl*)-2*methyl*-1*H*-*pyrrole*-3-*carboxylate* (**3** *mg*). Yellow solid, yield: 33.4 mg, 48%; mp = 84–64 °C, $R_f = 0.30$ (petroleum ether/ethyl acetate = 6:1); ¹H NMR (400 MHz, CDCl₃) δ 7.32–7.27 (m, 2H), 7.12 (t, *J* = 8.5 Hz, 2H), 4.13 (q, *J* = 7.2 Hz, 2H), 3.79–3.70 (m, 5H), 3.44 (s, 2H), 2.58 (s, 3H), 1.24 (t, *J* = 7.1 Hz, 3H), 1.12 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 173.0, 166.2, 162.8 (d, *J* = 248.0 Hz), 135.9, 133.1 (d, *J* = 8.3 Hz), 131.3, 127.6 (d, *J* = 3.3 Hz), 115.7 (d, *J* = 21.4 Hz), 115.3, 110.5, 60.5, 50.6, 39.1, 32.3, 16.1, 14.4, 11.8; IR (KBr) *v* 3447, 2978, 2924, 2875, 1734, 1685, 1505, 1448, 1415, 1370, 1339, 1296, 1268, 1226, 1181, 1154, 1096, 840, 821, 578, 527 cm⁻¹, HRMS (EI-TOF) calcd for C₁₉H₂₂FNO₄ [M]⁺ 347.1533, found: 347.1532.

Methyl 5-Benzyl-4-(2-ethoxy-2-oxoethyl)-1-ethyl-2-methyl-1Hpyrrole-3-carboxylate (**3mh**). Yellow solid, yield: 39.8 mg, 58%; mp = 102–104 °C, $R_f = 0.40$ (petroleum ether/ethyl acetate = 6:1); ¹H NMR (400 MHz, CDCl₃) δ 7.29–7.23 (m, 2H), 7.18 (t, J = 7.3 Hz, 1H), 7.12 (d, J = 7.4 Hz, 2H), 4.13 (q, J = 7.1 Hz, 2H), 3.94 (s, 2H), 3.76 (s, 3H), 3.74–3.64 (m, 4H), 2.50 (s, 3H), 1.24 (t, J = 7.1 Hz, 3H), 0.97 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.8, 166.3, 139.2, 135.9, 128.7, 128.1, 128.1, 126.5, 114.8, 110.2, 60.5, 50.5, 38.8, 32.0, 30.1, 15.6, 14.4, 11.6; IR (KBr) v 3453, 2982, 2920, 2872, 1738, 1701, 1532, 1437, 1332, 1253, 1201, 1174, 1089, 1028, 754, 724, 700 cm⁻¹; HRMS (EI-TOF) calcd for C₂₀H₂₅NO₄ [M]⁺ 343,1784, found: 343.1783.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.joc.6b01737.

crystallographic data (CIF)

Copies of ¹H and ¹³C NMR spectra data for all compounds (PDF)

AUTHOR INFORMATION

Corresponding Authors

*E-mail: xyluo@ecust.edu.cn.

*E-mail: weiping_deng@ecust.edu.cn.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work is supported by the National Natural Science Foundation of China (no. 21372074) and the Shanghai Comittee of Science and Technology (no. 14431902500)

REFERENCES

(1) (a) Smith, K. M.; Fujinari, E. M.; Pandey, R. K.; Tabba, H. D. J. Org. Chem. **1986**, 51, 4667–4676. (b) Fürstner, A. Angew. Chem., Int. Ed. **2003**, 42, 3582–3603. (c) Fan, H.; Peng, J.; Hamann, M. T.; Hu, J.-F. Chem. Rev. **2008**, 108, 264–287. (d) Baumann, M.; Baxendale, I. R.; Ley, S. V.; Nikbin, N. Beilstein J. Org. Chem. **2011**, 7, 442–495.

(2) For selected reviews of the synthesis of polysubstituted pyrrole, see: (a) Baltazzi, E.; Krimen, L. I. Chem. Rev. 1963, 63, 511-556.
(b) Gulevich, A. V.; Dudnik, A. S.; Chernyak, N.; Gevorgyan, V. Chem. Rev. 2013, 113, 3084-3213. (c) Estévez, V.; Villacampa, M.; Menéndez, J. C. Chem. Soc. Rev. 2014, 43, 4633-4657.

(3) For selected recent examples of the synthesis of polysubstituted pyrrole, see: (a) Wan, X.; Xing, D.; Fang, Z.; Li, B.; Zhao, F.; Zhang, K.; Yang, L.; Shi, Z. J. Am. Chem. Soc. 2006, 128, 12046–12047.
(b) Liu, W.; Jiang, H.; Huang, L. Org. Lett. 2010, 12, 312–315.
(c) Chen, F.; Shen, T.; Cui, Y.; Jiao, N. Org. Lett. 2012, 14, 4926–4929. (d) Liu, J.; Fang, Z.; Zhang, Q.; Liu, Q.; Bi, X. Angew. Chem., Int. Ed. 2013, 52, 6953–6957. (e) Xuan, J.; Xia, X. D.; Zeng, T. T.; Feng, Z. J.; Chen, J. R.; Lu, L. Q.; Xiao, W. J. Angew. Chem., Int. Ed. 2014, S3, 5653–5656. (f) Gilbert, Z. W.; Hue, R. J.; Tonks, I. A. Nat. Chem. 2015, 8, 63–68. (g) Wu, X.; Li, K.; Wang, S.; Liu, C.; Lei, A. Org. Lett. 2016, 18, 56–59.

(4) (a) Enders, D.; Niemeier, O.; Henseler, A. Chem. Rev. 2007, 107, 5606–5655. (b) Mukherjee, S.; Yang, J. W.; Hoffmann, S.; List, B. Chem. Rev. 2007, 107, 5471–5569.

(5) (a) Elassar, A.-Z. A.; El-Khair, A. A. Tetrahedron 2003, 59, 8463–8480. (b) Stanovnik, B.; Svete, J. Chem. Rev. 2004, 104, 2433–2480.
(6) (a) Rakshit, S.; Patureau, F. W.; Glorius, F. J. Am. Chem. Soc. 2010, 132, 9585–9587. (b) Stuart, D. R.; Alsabeh, P.; Kuhn, M.;

Fagnou, K. J. Am. Chem. Soc. 2010, 132, 18326–18339. (c) Yan, R.-L.; Luo, J.; Wang, C.-X.; Ma, C.-W.; Huang, G.-S.; Liang, Y.-M. J. Org. Chem. 2010, 75, 5395–5397. (d) Yu, W.; Zhang, W.; Liu, Y.; Zhou, Y.; Liu, Z.; Zhang, Y. RSC Adv. 2016, 6, 24768–24772 and references cited therein. (e) Li, K.; You, J. J. Org. Chem. 2016, 81, 2327–2339. (f) Zhang, X.-Y.; Yang, Z.-W.; Chen, Z.; Wang, J.; Yang, D.-L.; Shen, Z.; Hu, L.-L.; Xie, J.-W.; Zhang, J.; Cui, H.-L. J. Org. Chem. 2016, 81, 1778–1785. (g) Lei, T.; Liu, W.-Q.; Li, J.; Huang, M.-Y.; Yang, B.; Meng, Q.-Y.; Chen, B.; Tung, C.-H.; Wu, L.-Z. Org. Lett. 2016, 18, 2479–2482.

(7) Danishefsky, S.; Etheredge, S.; Volkmann, R.; Eggler, J.; Quick, J. J. Am. Chem. Soc. **1971**, 93, 5575–5576.

(8) For selected reviews of the synthesis of polysubstituted pyrrole, see: (a) Hoffmann-Röder, A.; Krause, N. Angew. Chem., Int. Ed. 2004, 43, 1196–1216. (b) Ma, S. Acc. Chem. Res. 2009, 42, 1679–1688. (c) Aubert, C.; Fensterbank, L.; Garcia, P.; Malacria, M.; Simonneau, A. Chem. Rev. 2011, 111, 1954–1993. (d) Ye, J.; Ma, S. Acc. Chem. Res. 2014, 47, 989–1000.

(9) For selected recent examples of the synthesis of heterocycles from allenes, see: (a) Xu, Z.; Lu, X. J. Org. Chem. **1998**, 63, 5031– 5041. (b) Dieter, R. K.; Yu, H. Org. Lett. **2001**, 3, 3855–3858. (c) Xia, Y.; Dudnik, A. S.; Gevorgyan, V.; Li, Y. J. Am. Chem. Soc. **2008**, 130, 6940–6941. (d) Benedetti, E.; Lemiere, G.; Chapellet, L.-L.; Penoni, A.; Palmisano, G.; Malacria, M.; Goddard, J.-P.; Fensterbank, L. Org. Lett. **2010**, 12, 4396–4399. (e) Liu, B.; Hong, X.; Yan, D.; Xu, S.; Huang, X.; Xu, B. Org. Lett. **2012**, 14, 4398–4401. (f) Liao, J.-Y.; Shao, P.-L.; Zhao, Y. J. Am. Chem. Soc. 2015, 137, 628–631. (g) Lin, W.; Cheng, J.; Ma, S. Adv. Synth. Catal. 2016, 358, 1989–1999. (h) Ni, C.; Wang, M.; Tong, X. Org. Lett. 2016, 18, 2240–2243. (i) Zhou, Q.-F.; Zhang, K.; Cai, L.; Kwon, O. Org. Lett. 2016, 18, 2954–2957.

(10) Li, H.-L.; Wang, Y.; Sun, P.-P.; Luo, X.; Shen, Z.; Deng, W.-P. Chem. - Eur. J. 2016, 22, 9348–9355.

(11) (a) Ge, L.-S.; Wang, Z.-L.; An, X.-L.; Luo, X.; Deng, W.-P. Org. Biomol. Chem. **2014**, *12*, 8473–8479. (b) Wang, Z.-L.; Li, H.-L.; Ge, L.-S.; An, X.-L.; Zhang, Z.-G.; Luo, X.; Fossey, J. S.; Deng, W.-P. J. Org. Chem. **2014**, *79*, 1156–1165. (c) Luo, X.; Ge, L.-S.; An, X.-L.; Jin, J.-H.; Wang, Y.; Sun, P.-P.; Deng, W.-P. J. Org. Chem. **2015**, *80*, 4611–4617.

(12) Li, Y.; Xu, H.; Xing, M.; Huang, F.; Jia, J.; Gao, J. Org. Lett. **2015**, *17*, 3690–3693.

(13) For the X-ray structure of **3mh** and the corresponding data see the **SI**. CCDC 1479624 (**3mh**) contains the crystallographic data for this paper.

(14) (a) He, Z.; Li, H.; Li, Z. J. Org. Chem. 2010, 75, 4636–4639.
(b) Xu, P.; Huang, K.; Liu, Z.; Zhou, M.; Zeng, W. Tetrahedron Lett. 2013, 54, 2929–2933.

(15) (a) Selig, P.; Raven, W. Org. Lett. 2014, 16, 5192-5195.
(b) Koppanathi, N.; Swamy, K. C. K. Org. Biomol. Chem. 2016, 14, 5079-5087.